Boundary friction force of tree frog’s toe pads and bio-inspired hexagon pillar surface
نویسندگان
چکیده
منابع مشابه
Biomimetic design of elastomer surface pattern for friction control under wet conditions.
In this paper, an observation on the toe pad of a newt was carried out. It was found that the pad surface is covered with an array of polygonal cells separated by channels, similar to those of a tree frog's pad. With this micro-structure, a newt can move on wet and smooth surfaces without slipping. Inspired by the surface structure of newt toe pads, elastic micro-patterned surfaces were fabrica...
متن کاملFriction Force for Boundary Lubrication
A thermodynamic model describing the phase transition of first order between structure states of lubricant material in the boundary friction regime is proposed. It is shown that lubricant melts with temperature increase or at shear of rubbing surfaces if the elastic strain (stress) exceeds the critical value. The phase diagram with domains of dry and sliding friction is constructed. The depende...
متن کاملFunctionally Different Pads on the Same Foot Allow Control of Attachment: Stick Insects Have Load-Sensitive “Heel” Pads for Friction and Shear-Sensitive “Toe” Pads for Adhesion
Stick insects (Carausius morosus) have two distinct types of attachment pad per leg, tarsal "heel" pads (euplantulae) and a pre-tarsal "toe" pad (arolium). Here we show that these two pad types are specialised for fundamentally different functions. When standing upright, stick insects rested on their proximal euplantulae, while arolia were the only pads in surface contact when hanging upside do...
متن کاملBio-Inspired Polymer Membrane Surface Cleaning
To generate polyethersulfone membranes with a biocatalytically active surface, pancreatin was covalently immobilized. Pancreatin is a mixture of digestive enzymes such as protease, lipase, and amylase. The resulting membranes exhibit self-cleaning properties after “switching on” the respective enzyme by adjusting pH and temperature. Thus, the membrane surface can actively degrade a fouling laye...
متن کاملThe Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads
An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chinese Science Bulletin
سال: 2016
ISSN: 0023-074X
DOI: 10.1360/n972015-01166